Mod p structure of alternating and non-alternating multiple harmonic sums

نویسنده

  • Jianqiang ZHAO
چکیده

The well-known Wolstenholme’s Theorem says that for every prime p > 3 the (p−1)-st partial sum of the harmonic series is congruent to 0 modulo p2. If one replaces the harmonic series by ∑ k≥1 1/n for k even, then the modulus has to be changed from p2 to just p. One may consider generalizations of this to multiple harmonic sums (MHS) and alternating multiple harmonic sums (AMHS) which are partial sums of multiple zeta value series and the alternating Euler sums, respectively. A lot of results along this direction have been obtained in the recent articles [6, 7, 8, 10, 11, 12], which we shall summarize in this paper. It turns out that for a prime p the (p−1)-st sum of the general MHS and AMHS modulo p is not congruent to 0 anymore; however, it Mots clefs. Multiple harmonic sums, alternating multiple harmonic sums, duality, shuffle relations. Classification math.. 11M41, 11B50, 11A07.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruences Involving Alternating Multiple Harmonic Sums

We show that for any prime prime p = 2, p−1 k=1 (−1) k k − 1 2 k ≡ − (p−1)/2 k=1 1 k (mod p 3) by expressing the left-hand side as a combination of alternating multiple harmonic sums.

متن کامل

Congruences involving alternating multiple harmonic sum

We show that for any prime prime p = 2 p−1 k=1 (−1) k k − 1 2 k ≡ − (p−1)/2 k=1 1 k (mod p 3) by expressing the l.h.s. as a combination of alternating multiple harmonic sums.

متن کامل

Quasi-symmetric functions and mod p multiple harmonic sums

We present a number of results about (finite) multiple harmonic sums modulo a prime, which provide interesting parallels to known results about multiple zeta values (i.e., infinite multiple harmonic series). In particular, we prove a “duality” result for mod p harmonic sums similar to (but distinct from) that for multiple zeta values. We also exploit the Hopf algebra structure of the quasi-symm...

متن کامل

Reduction of Multiple Harmonic Sums and Harmonic Polylogarithms

The alternating and non-alternating harmonic sums and other algebraic objects of the same equivalence class are connected by algebraic relations which are induced by the product of these quantities and which depend on their index calss rather than on their value. We show how to find a basis of the associated algebra. The length of the basis l is found to be ≤ 1/d, where d is the depth of the su...

متن کامل

Central Binomial Sums, Multiple Clausen Values, and Zeta Values

We find and prove relationships between Riemann zeta values and central binomial sums. We also investigate alternating binomial sums (also called Apéry sums). The study of non-alternating sums leads to an investigation of different types of sums which we call multiple Clausen values. The study of alternating sums leads to a tower of experimental results involving polylogarithms in the golden ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011